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Micromechanics of crack nucleation during 
indentations 
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An analysis for the nucleation of microcracks from the inhomogeneous flow lines in 
soda-lime glass under Vickers indentations is considered. The minimum loads for crack 
nucleation are shown to depend on the hardness, H, and the critical stress intensity 
factor, Kic. Unlike the Lawn and Evans analysis, the present model does not require the 
presence of any fortuitous flaws of critical dimensions in the material, since the flaws are 
nucleated by the deformation in the deformed zone. 

1. Introduction 
The formation of median cracks during inden- 
tations with a Vickers indenter consists of the 
nucleation of the initiating flaw in the bulk and 
its subsequent propagation. The propagation of 
the fully developed median cracks has been 
discussed extensively by several workers [1 -7] .  
Tile problem of the nucleation of the flaw is, 
however, more complex because o f  the elastic- 
plastic indentation stress fields involved. This is 
further complicated by the fact that when dealing 
with crystalline solids, material properties like 
grain size, hardness, H, and the critical stress inten- 
sity factor, Kic, would be expected to influence 
the nucleation processes, 

The initiation of the median crack has been 
considered recently by Lawn and Evans [2]. Their 
model implies the existence of sub-surface "fortu- 
itous" flaws of the right critical dimensions in 
the vicinity of the elastic-plastic boundary where 
the indentation tensile stresses are highest. By 
making assumptions about the magnitude (from 
Hill's treatment [8] ) and variation of the tensile 
stresses and the location of the initiating pre- 
existing cracks, Lawn and Evans have obtained 
critical conditions for the initiation of the sub- 
surface flaws. They have shown that the minimum 
load to propagate the critical flaws is 

Pc -- 2.2 x 104 \ / _ / ]  "~Ic. 
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The size of the corresponding "fortuitous" critical 
flaw is given by 

Crnm = 44.2 (2) 

(1) 
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In the above model, failure of the expanding 
tensile stress front to meet the right critical flaw 
means that the applied load has to be increased 
so that the expanding tensile front can sample 
flaws which lie deeper in the bulk. The magni- 
tude of the tensile stress level stays constant and 
it is only its position that varies in order to sample 
the randomly distributed flaws in the bulk. Their 
treatment, however, ignores the response of the 
materials to the constraints on the deformation 
imposed by the indenter, and disregards any 
anisotropy or inhomogeneity in the deformation 
of crystalline materials. Moreover, the minimum 
crack lengths predicted by this model of 123/ira 
for NaC1 and 440/ira for KC1 are large enough to 
be detected if they really existed in the "virgin" 
material. It is proposed in this paper that these 
large flaw sizes are not necessarily inherent in the 
materials, and that the interaction of dislocations 
in crystalline materials [9--13] or inhomogeneous 
deformation in some glassy materials [1 ] can play 
an important role in the nucleation and growth of 
the sub-surface cracks to the large sizes predicted 
by the Lawn and Evans model. 
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2. Observations on crack nucleation in 
solids 

The importance of inhomogeneity in the sub- 
surface deformation and the interaction of shear 
flow lines to the nucleation of both median and 
lateral cracks around Vickers indentations in 
soda-lime glass has been pointed out by Hagan and 
Swain [1]. More recent studies of  the sub-surface 
deformed zones under Vickers indentations in 
single crystals of LiF and KC1 have again high- 
lighted the importance of the deformation process 
to the nucleation of various cracks around the 
indentations. Fig. 1 shows the surface and sub- 
surface deformation around Vickers indentations 
in LiF. The method of sectioning the indentations 
is described elsewhere [1, 14]. The haloes arrowed 
H on the surface of the specimen in Fig. l a are 
reflections from sub-surface cracks around the 

10 N load indentation on the sectioning crack, SS. 
Fig. lc to f show the sub-surface deformations in 
LiF at indenter loads of 5, 10, 25 and 30N, res- 
pectively. The specimens have been etched in a 
dilute solution of FeC13 in distilled water to reveal 
the dislocations. The cracks, SC, along (1 0 1) 45 ~ 
appear at indenter loads of 10N and they are 
obviously formed by the interaction of dislocations 
on intersecting (1 1 0) 90 ~ and (1 0 1) 45 ~ planes 
(Fig. ld). The median crack, MC in Fig. lf, formed 
at loads of  30 N, is again the result of the inter- 
action of dislocation on two intersecting (i  0 I) 
45 ~ planes. Fig. 2 shows the sub-surface defor- 
mation under Vickers indentations in KC1. The 
specimen has not been etched and the sub-surface 
deformation is uniform and radial from the in- 
denter faces. The deformed sub-surface region is 
similar to that observed in cold-rolled steel under 

Figure 1 Surface (a) and sub-surface (b) damage under Vickers indentations in LiF. (c), (d), (e) and (f) are etched 
surfaces of sub-surface regions under Vickers indenter at loads of 5, 10, 25 and 30 N, respectively. Shear cracks are 
marked SC in (b) and (d) and the median crack is arrowed MC in (f). 
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Figure 2 Unetched sub-surface 
damage under 50N load Vickers 
indentations in KC1; (b) higher 
magnification of deformed zone. 
Palrnqvist radial cracks and shear 
cracks are marked RC and SC 
respectively in (a). 

wide-angle wedge indentations by Mulhearn [ 15 ]. 
The radial cracks, RC, appear to start at the 
boundary of the intense deformation band and 
there are traces of what appear like 45 ~ cracks 
marked SC in Fig. 2a; Fig. 2b is ahigher magnifi- 
cation of the deformed zone in Fig. 2a. A more 
detailed account of the nucleation of the various 
crack systems around pyramidal indentations in 
a range of solids is in preparation [16]. 

It is thus apparent that deformation processes 
can play a major role in crack nucleation in crystal- 
line solids or other materials which deform in- 
homogeneously; Further, nucleation is likely to be 
controlled on a more localized scale than is afforded 
by the expanding tensile stress front model of  
Lawn and Evans. 

3. Theory 
A model proposed for crack nucleation under 
Vickers indentation is based essentially on crack 
nucleation from the interaction of dislocations 
on two intersecting slip planes or from one slip 
plane blocking dislocations on another slip plane 
[9 -13] .  Since the nucleation is governed by 

shear deformation, tensile stresses do not appear 
to play an important part in the nucleation of 
these cracks. 

Consider a number of dislocations piling up at 
a point O due to slip on the plane OS and shear 
stress, Os (see Fig. 3). The normal stress at point 
P (associated with such a pile up) and acting 
normally on a plane inclined at 0 to the slip plane 
is 

] 112 

(3) 

where L is the slip length, r is the distance of P 
from O and f(O) gives the angular dependence 
[10]. For isotropic solids this stress has a maxi- 
mum value for 0 = 70.5 ~ A singularity occurs in 
the stress field and near the end of the pile up the 
stresses may be high enough to lead to the rupture 
of  cohesive bonds in the region of the high stress 
concentration. One may also compute the energy 
associated with forming a hypothetical crack, c, 
along OP and determine whether the formation 
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(a) Figure 3 Schematic diagram of dislocations piling up at 
O due to slip along OS and producing a craek along OP 
where P is at a distance ofr  from O. 

. .~• i i i i 

(b) 
j indenter 
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of such a crack would lead to an overall decrease 
in the energy associated with the pile up [10]. 

It has been shown that the dislocations in the 
pile up will collapse and coalesce to form a crack 
(with an overall decrease in energy) if  the effec- 
tive shear stress as given by Stroh is 

3~" [ 3'# ] ,  (4) 
4 -2 

where 3' is the fracture surface energy, /.t is the 
shear modulus, and v is the Poisson ratio. This 
equation is independent of  the crack length and 
is, therefore, satisfied for all crack lengths much 
less than L. This means that when the critical 
conditions for crack nucleation are satisfied, the 
cracks continue to grow in size until the elastic 
energy associated with the dislocation pile up has 
been dissipated in creating new fracture surfaces. 

To calculate the critical conditions for micro- 
crack nucleation using Vickers indentation one 
assumes that: 

(a) the slip length, L, for the nucleation of a 
crack is less than or equal to 1.4a where a is half 
the diagonal length of  the indentation (experi- 
mental observation); and 

(b) the operating shear stress has a maximum 
value equal to the shear yield stress, which for a 
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perfectly rigid-plastic solid is 11/6 (H is the hard- 
ness). 

This assumption is justified by the fact that 
under spherical indentations on LiF single crystals, 
the resolved stress on the dislocation nearest the 
specimen surface is 0 . 1 H  [17].  Stroh has also 
shown that in polycrystalline metals the dislocation- 
induced cracks can form at strains within the 
elastic limit and the operating shear stresses are 
likely to be lower than 1t/6. 

In the treatment that follows, it will be as- 
sumed the e s = 0 .1H.  This means that  Equation 
4 becomes 

H2/100 = 3zrE~/32(1 -- v2)L (5) 

where ~ (= 23') is the .strain energy release rate 
and E is the Young's modulus. The equation 
/ s = E / 2 ( 1  + v) relating # and E is, of  course, 
strictly true for isotropic solids only, but it is 
assumed to be reasonably accurate if mean values 
of  tl, E and v are taken. Equation 5, therefore, 
represents conditions of  crack initiation if the 
formation of  such a crack would lead to an overall 
decrease in the energy of  the system. 

Since the critical stress intensity factor, KIC, is 
related to the strain energy release rate, ~r by 

K ~ c -  
1 - -  v 2 



for plane strain conditions, Equation 5 may be 

expressed as 

32 = 29.5 . (6) 

As pointed out earlier, Stroh's analysis [10] holds 
for all crack lengths much less than L, the slip 
length. To obtain the maximum crack length 
allowed by this analysis, we set the slip length L 
in Equation 6 equal to the crack length. This is 
equivalent to setting the maximum crack length 
equal to the grain size in polycrystalline materials 
[10].  Therefore, 

c = 29.5 ~ . (7) 

Also, since L ~ 1.4a and the Vickers hardness, H i s  
given by 

P 1/2 

Equation 8 may be substituted into Equation 6 to 
obtain the critical load for crack nucleation of  

3 

(9) 

Equations 7 and 9 are essentially the same as those 
given by Lawn and Evans model except for the 
constants in the expressions. The differences in 
the constants arise from the choice of  the maxi- 

mum operating stresses. The critical loads Pc and 
the largest crack sizes that could be formed by 
such dislocation processes for various materials are 
listed and compared with those given by the Lawn 
and Evans analysis (see Table I). 

4. Discussion 
The above analysis assumes that it is the continued 
slip on the inhomogenous flow or slip line that is 
responsible for the nucleation and growth of  the 
crack to the critical dimensions. In general, how- 
ever, the applied load will have a tensile component 
normal to and across the crack path and this would 
contribute to the propagation of  the crack. For a 
given critical load the crack lengths given in Table 
I are likely to be lower estimates. Two main points 
can be made concerning the present analysis and 
the results of  Table I. Firstly, a mechanism for 
producing flaws during the deformation process is 
provided. This removes a major problem of the 
Lawn and Evans model, which, for materials 
such as NaC1 and KC1, required very large flaws of  
detectable dimensions to be present. Secondly, 
though it must be appreciated that the data in 
Table I from both models are only approximate, 
the new model predicts rather lower values for 
Pc than for the Lawn and Evans. 

It seems likely that a material property like 
grain size should influence the nucleation para- 
meters. However, it appears that in these inden- 
tation experiments the effects of  grain size is 
implicit in the overall response of  the material 
to the indenter constraints through the hardness 
H and the position of  the elastic-plastic boundary 
where the maximum distortions can occur. The 

TABLE I 

Materials Hardness KIC (MPa m 1~2 ) 
H (GPa) 

Critical load (N) Critical flaw (pm) 

Lawn and Evans Present Lawn and Evans Present 
analysis analysis 

Wc (Cb 18.6 13.0 
NaC1 (sc) 0.24 0.4 
KC1 (sc) 0.095 0.3 
Si3N 4 (hp) 16.0 5.0 
AlzO 3 12.0 4.0 
ZnS (vd) 1.9 1.0 
SiC (hp) 19.0 4.0 
MgF 2 (hp) 5.8 0.9 
MgO (hp) 9.2 1.2 
SiO2 6.2 1.2 
Si (sc) 10.0 0.6 

98 39.4 22 14.4 
41 1.6 123 82 

208 8.4 440 295 
3.3 0.14 4.3 2.9 
3.3 0.13 5 3.3 
3.2 0.12 12.2 8.2 
0.8 0.03 2 1.3 
0.07 0.03 1.1 0.7 
0.06 0.25 0.8 0.58 
0.02 0.008 1.7 1.1 
0.003 0.001 0.2 0.1 

Cb, Co-bonded; sc, single crystal; hp, hot-pressed; vd, vapour-deposited. 
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high compressive hydrostatic pressure directly 
below the indenter effectively limits or suppresses 
any micro-structural effects to regions at the 
elastic-plastic boundary. 

The application of  this model, which is strictly 
only true for crystalline materials, to  glassy 
silicates calls for comment.  In glasses, like soda- 
lime glass, which display inhomogeneous flow 
properties under pyramidal indentations [17],  the 
analysis may be used without too much error, 
The use of  the model for predicting critical con- 

iditions in fused silica glass, which does not exhibit 
:any inhomogeneous flow characteristics under 
pyramidal  indentations [18] ,  is uncertain. No 
detailed analysis has been made for this situation, 
but stresses at the elastic-plastic boundary caused 
by the wedging action o f  the deformed zone may 
cause flaws to develop. 

The analysis assumes that the shear stresses 
involved in crack nucleation are approximately 
0.1H. For highly elastic solids like glasses, the 
shear yield stress in fact usually lies between 0.3 
and 0.4H. It is, however, possible that the yield 
stress or yield behaviour Of silicate glasses in 
compression is different from that in tension 
because of  the possible compaction of  the silica 
network in compression experiments. The true 
yield stress may,  therefore, be lower than with 
other glasses and nearer to the assumed value of  
0.1H. 

It is worth pointing out that a recent analysis 
by Veldkamp et al. [19] has shown that the mini- 
mum load for the nucleation of  cracks around 
scratches is 

F = L K 4 C  

where Hs is the scratching hardness and L is a 
constant for a given geometry and the orientation 
o f  the scratching point and for a particular 
crack. This equation is essentially the same as 
given by Lawn and Evans and in this paper 

(Equation 9); and it underlies the basic processes 
of  microplasticity and fracture in both static and 
scratching experiments. 
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